For an up-to-date view of publications please see : https://www.ncbi.nlm.nih.gov/myncbi/justin.parreno.1/bibliography/public

Whole Mount Imaging to Visualize and Quantify Peripheral Lens Structure, Cell Morphology, and Organization

Emin G, Islam ST, King RE, Fowler VM, Cheng C, Parreno J .

J Vis Exp. 2024 Jan 19;(203).

The ocular lens is a transparent flexible tissue that alters its shape to focus light from different distances onto the retina. Aside from a basement membrane surrounding the organ, called the capsule, the lens is entirely cellular consisting of a monolayer of epithelial cells on the anterior hemisphere and a bulk mass of lens fiber cells. Throughout life, epithelial cells proliferate in the germinative zone at the lens equator, and equatorial epithelial cells migrate, elongate, and differentiate into newly formed fiber cells. Equatorial epithelial cells substantially alter morphology from randomly packed cobble-stone-shaped cells into aligned hexagon-shaped cells forming meridional rows. Newly formed lens fiber cells retain the hexagonal cell shape and elongate toward the anterior and posterior poles, forming a new shell of cells that are overlaid onto previous generations of fibers. Little is known about the mechanisms that drive the remarkable morphogenesis of lens epithelial cells to fiber cells. To better understand lens structure, development, and function, new imaging protocols have been developed to image peripheral structures using whole mounts of ocular lenses. Here, methods to quantify capsule thickness, epithelial cell area, cell nuclear area and shape, meridional row cell order and packing, and fiber cell widths are shown. These measurements are essential for elucidating the cellular changes that occur during lifelong lens growth and understanding the changes that occur with age or pathology.

The Actin Cytoskeleton as a Regulator of Proteoglycan 4

Gonzalez-Nolde S, Schweiger CJ, Davis EER, Manzoni TJ, Hussein SMI, Schmidt TA, Cone SG, Jay GD, Parreno J .

Cartilage. 2024 Jan 6:19476035231223455.

Objective: The superficial zone (SZ) of articular cartilage is responsible for distributing shear forces for optimal cartilage loading and contributes to joint lubrication through the production of proteoglycan 4 (PRG4). PRG4 plays a critical role in joint homeostasis and is chondroprotective. Normal PRG4 production is affected by inflammation and irregular mechanical loading in post-traumatic osteoarthritis (PTOA). THe SZ chondrocyte (SZC) phenotype, including PRG4 expression, is regulated by the actin cytoskeleton in vitro. There remains a limited understanding of the regulation of PRG4 by the actin cytoskeleton in native articular chondrocytes. The filamentous (F)-actin cytoskeleton is a potential node in crosstalk between mechanical stimulation and cytokine activation and the regulation of PRG4 in SZCs, therefore developing insights in the regulation of PRG4 by actin may identify molecular targets for novel PTOA therapies.

Materials and methods: A comprehensive literature search on PRG4 and the regulation of the SZC phenotype by actin organization was performed.

Results: PRG4 is strongly regulated by the actin cytoskeleton in isolated SZCs in vitro. Biochemical and mechanical stimuli have been characterized to regulate PRG4 and may converge upon actin cytoskeleton signaling.

Conclusion: Actin-based regulation of PRG4 in native SZCs is not fully understood and requires further elucidation. Understanding the regulation of PRG4 by actin in SZCs requires an in vivo context to further potential of leveraging actin arrangement to arthritic therapeutics.

Keywords: actin cytoskeleton; lubricin; post-traumatic osteoarthritis; proteoglycan 4; superficial zone chondrocytes.

Targeting F-actin stress fibers to suppress the dedifferentiated phenotype in chondrocytes

Schofield MM, Rzepski A, Hammerstedt J, Shah S, Mirack C, Parreno J .

bioRxiv. 2023 Dec 9:2023.12.08.570865.

Actin is a central mediator of the chondrocyte phenotype. Monolayer expansion of articular chondrocytes on tissue culture polystyrene, for cell-based repair therapies, leads to chondrocyte dedifferentiation. During dedifferentiation, chondrocytes spread and filamentous (F-)actin reorganizes from a cortical to a stress fiber arrangement causing a reduction in cartilage matrix expression and an increase in fibroblastic matrix and contractile molecule expression. While the downstream mechanisms regulating chondrocyte molecular expression by alterations in F-actin organization have become elucidated, the critical upstream regulators of F-actin networks in chondrocytes are not completely known. Tropomyosin (TPM) and the RhoGTPases are known regulators of F-actin networks. The purpose of this study is to elucidate the regulation of passaged chondrocyte F-actin stress fiber networks and cell phenotype by the specific TPM, TPM3.1, and the RhoGTPase, CDC42. Our results demonstrated that TPM3.1 associates with cortical F-actin and stress fiber F-actin in primary and passaged chondrocytes, respectively. In passaged cells, we found that TPM3.1 inhibition causes F-actin reorganization from stress fibers back to cortical F-actin and also causes an increase in G/F-actin. CDC42 inhibition also causes formation of cortical F-actin. However, CDC42 inhibition, but not TPM3.1 inhibition, leads to the re-association of TPM3.1 with cortical F-actin. Both TPM3.1 and CDC42 inhibition reduces nuclear localization of myocardin related transcription factor, which is known to suppress dedifferentiated molecule expression. We confirmed that TPM3.1 or CDC42 inhibition partially redifferentiates passaged cells by reducing fibroblast matrix and contractile expression, and increasing chondrogenic SOX9 expression. A further understanding on the regulation of F-actin in passaged cells may lead into new insights to stimulate cartilage matrix expression in cells for regenerative therapies.

Adseverin, an actin-binding protein, modulates hypertrophic chondrocyte differentiation and osteoarthritis progression

Chan B, Glogauer M, Wang Y, Wrana J, Chan K, Beier F, Bali S, Hinz B, Parreno J, Ashraf S, Kandel R.

Sci Adv. 2023 Aug 4;9(31):eadf1130.

In osteoarthritis (OA), a disease characterized by progressive articular cartilage degradation and calcification, the articular chondrocyte phenotype changes and this correlates with actin cytoskeleton alterations suggesting that it regulates gene expression essential for proper phenotype. This study reports that OA is associated with the loss of adseverin, an actin capping and severing protein. Adseverin deletion (Adseverin-/-) in mice compromised articular chondrocyte function, by reducing F-actin and aggrecan expression and increasing apoptosis, Indian hedgehog, Runx2, MMP13, and collagen type X expression, and cell proliferation. This led to stiffer cartilage and decreased hyaline and increased calcified cartilage thickness. Together, these changes predisposed the articular cartilage to enhanced OA severity in Adseverin-/- mice who underwent surgical induction of OA. Adseverin-/- chondrocyte RNA sequencing and in vitro studies together suggests that adseverin modulates cell viability and prevents mineralization. Thus, adseverin maintains articular chondrocyte phenotype and cartilage tissue homeostasis by preventing progression to hypertrophic differentiation in vivo. Adseverin may be chondroprotective and a potential therapeutic target.

The application of mechanical load onto mouse tendons by magnetic restraining represses Mmp-3 expression

Mousavizadeh R, West VC, Inguito KL, Elliott DM, Parreno J .

BMC Res Notes. 2023 Jun 30;16(1):127.

Objectives: Mechanical loading is crucial for tendon matrix homeostasis. Under-stimulation of tendon tissue promotes matrix degradation and ultimately tendon failure. In this study, we examined the expression of tendon matrix molecules and matrix-degrading enzymes (matrix metalloproteinases) in stress-deprived tail tendons and compared to tendons that were mechanically loaded by a simple restraining method.

Data description: Isolated mouse tail fascicles were either floated or restrained by magnets in cell culture media for 24 h. The gene expression of tendon matrix molecules and matrix metalloproteinases in the tendon fascicles of mouse tails were examined by real-time RT-PCR. Stress deprivation of tail tendons increase Mmp3 mRNA levels. Restraining tendons represses these increases in Mmp3. The gene expression response to restraining was specific to Mmp3 at 24 h as we did not observe mRNA level changes in other matrix related genes that we examined (Col1, Col3, Tnc, Acan, and Mmp13). To elucidate, the mechanisms that may regulate load transmission in tendon tissue, we examined filamentous (F-)actin staining and nuclear morphology. As compared to stress deprived tendons, restrained tendons had greater staining for F-actin. The nuclei of restrained tendons are smaller and more elongated. These results indicate that mechanical loading regulates specific gene expression potentially through F-actin regulation of nuclear morphology. A further understanding on the mechanisms involved in regulating Mmp3 gene expression may lead to new strategies to prevent tendon degeneration.

Overload in a Rat In Vivo Model of Synergist Ablation Induces Tendon Multiscale Structural and Functional Degeneration

Bloom ET, Lin LM, Locke RC, Giordani A, Krassan E, Peloquin JM, Silbernagel KG, Parreno J , Santare MH, Killian ML, Elliott DM.

J Biomech Eng. 2023 Aug 1;145(8):081003.

Tendon degeneration is typically described as an overuse injury with little distinction made between magnitude of load (overload) and number of cycles (overuse). Further, in vivo, animal models of tendon degeneration are mostly overuse models, where tendon damage is caused by a high number of load cycles. As a result, there is a lack of knowledge of how isolated overload leads to degeneration in tendons. A surgical model of synergist ablation (SynAb) overloads the target tendon, plantaris, by ablating its synergist tendon, Achilles. The objective of this study was to evaluate the structural and functional changes that occur following overload of plantaris tendon in a rat SynAb model. Tendon cross-sectional area (CSA) and shape changes were evaluated by longitudinal MR imaging up to 8 weeks postsurgery. Tissue-scale structural changes were evaluated by semiquantified histology and second harmonic generation microscopy. Fibril level changes were evaluated with serial block face scanning electron microscopy (SBF-SEM). Functional changes were evaluated using tension tests at the tissue and microscale using a custom testing system allowing both video and microscopy imaging. At 8 weeks, overloaded plantaris tendons exhibited degenerative changes including increases in CSA, cell density, collagen damage area fraction (DAF), and fibril diameter, and decreases in collagen alignment, modulus, and yield stress. To interpret the differences between overload and overuse in tendon, we introduce a new framework for tendon remodeling and degeneration that differentiates between the inputs of overload and overuse. In summary, isolated overload induces multiscale degenerative structural and functional changes in plantaris tendon.

Nonmuscle Myosin IIA Regulates the Precise Alignment of Hexagonal Eye Lens Epithelial Cells During Fiber Cell Formation and Differentiation

Islam ST, Cheng C, Parreno J , Fowler VM.

Invest Ophthalmol Vis Sci. 2023 Apr 3;64(4):20.

Purpose: Epithelial cells in the equatorial region of the ocular lens undergo a remarkable transition from randomly packed cells into precisely aligned and hexagon-shaped cells organized into meridional rows. We investigated the function of nonmuscle myosin IIA (encoded by Myh9) in regulating equatorial epithelial cell alignment to form meridional rows during secondary fiber cell morphogenesis.

Methods: We used genetic knock-in mice to study a common human Myh9 mutation, E1841K, in the rod domain. The E1841K mutation disrupts bipolar filament assembly. Lens shape, clarity, and stiffness were evaluated, and Western blots were used to determine the level of normal and mutant myosins. Cryosections and lens whole mounts were stained and imaged by confocal microscopy to investigate cell shape and organization.

Results: We observed no obvious changes in lens size, shape, and biomechanical properties (stiffness and resilience) between the control and nonmuscle myosin IIA-E1841K mutant mice at 2 months of age. Surprisingly, we found misalignment and disorder of fiber cells in heterozygous and homozygous mutant lenses. Further analysis revealed misshapen equatorial epithelial cells that cause disorientation of the meridional rows before fiber cell differentiation in homozygous mutant lenses.

Conclusions: Our data indicate that nonmuscle myosin IIA bipolar filament assembly is required for the precise alignment of the meridional rows at the lens equator and that the organization of lens fiber cells depends on the proper patterning of meridional row epithelial cells. These data also suggest that lens fiber cell organization and a hexagonal shape are not required for normal lens size, shape transparency, or biomechanical properties.

Optics-Free, In Situ Swelling Monitoring of Articular Cartilage with Graphene Strain Sensors

Shalini Sundar, Renata Linardi, Angela Gaesser, Tianzheng Guo, Kyla Ortved, Julie Engiles, Justin Parreno , Charles Dhong

ACS Biomater Sci Eng. 2023 Feb 13;9(2):1011-1019.

Articular cartilage derives its load-bearing strength from the mechanical and physiochemical coupling between the collagen network and negatively charged proteoglycans, respectively. Current disease modeling approaches and treatment strategies primarily focus on cartilage stiffness, partly because indentation tests are readily accessible. However, stiffness measurements via indentation alone cannot discriminate between proteoglycan degradation versus collagen degradation, and there is a lack of methods to monitor physiochemical contributors in full-stack tissue. To decouple these contributions, here, we developed a platform that measures tissue swelling in full-depth equine cartilage explants using piezoresistive graphene strain sensors. These piezoresistive strain sensors are embedded within an elastomer bulk and have sufficient sensitivity to resolve minute, real-time changes in swelling. By relying on simple DC resistance measurements over optical techniques, our platform can analyze multiple samples in parallel. Using these devices, we found that cartilage explants under enzymatic digestion showed distinctive swelling responses to a hypotonic challenge and established average equilibrium swelling strains in healthy cartilage (4.6%), cartilage with proteoglycan loss (0.5%), and in cartilage with both collagen and proteoglycan loss (-2.6%). Combined with histology, we decoupled the pathologic swelling responses as originating either from reduced fixed charge density or from loss of intrinsic stiffness of the collagen matrix in the superficial zone. By providing scalable and in situ monitoring of cartilage swelling, our platform could facilitate regenerative medicine approaches aimed at restoring osmotic function in osteoarthritic cartilage or could be used to validate physiologically relevant swelling behavior in synthetic hydrogels.

Methodologies to unlock the molecular expression and cellular structure of ocular lens epithelial cells

Parreno J, Emin G, Vu MP, Clark JT, Aryal S, Patel SD, Cheng C.

Front Cell Dev Biol . 2022 Sep 13;10:983178.

The transparent ocular lens in the anterior chamber of the eye is responsible for fine focusing of light onto the retina. The lens is entirely cellular with bulk of the tissue composed of fiber cells, and the anterior hemisphere of the lens is covered by a monolayer of epithelial cells. Lens epithelial cells are important for maintaining fiber cell homeostasis and for continual growth of the lens tissue throughout life. Cataracts, defined as any opacity in the lens, remain the leading cause of blindness in the world. Following cataract surgery, lens epithelial cells can undergo a process of epithelial-to-mesenchymal transition (EMT), leading to secondary cataracts due to posterior capsular opacification (PCO). Since the epithelial cells make up only a small fraction of the lens, specialized techniques are required to study lens epithelial cell biology and pathology. Studies using native lens epithelial cells often require pooling of samples to obtain enough cells to make sufficient samples for traditional molecular biology techniques. Here, we provide detailed protocols that enable the study of native mouse lens epithelial cells, including immunostaining of the native lens epithelium in flat mounts, extraction of RNA and proteins from pairs of lens epithelial monolayers, and isolation of lens epithelial cells for primary culture. These protocols will enable researchers to gain better insight on representative molecular expression and cellular structure of lens epithelial cells. We also provide comparative data between native, primary culture, and immortalized lens epithelial cells and discuss the advantages and disadvantages of each technique presented.

Destabilization of F-actin by Mechanical Stress Deprivation or Tpm3.1 Inhibition Promotes a Pathological Phenotype in Tendon Cells

Inguito KL, Schofield MM, Faghri ET, Bloom ET, Heino M, Elliott DM, Parreno J

Mol Biol Cell . 2022 Sep 21;mbcE22020067

The actin cytoskeleton is a central mediator between mechanical force and cellular phenotype. In tendon, it is speculated that mechanical stress deprivation regulates gene expression by filamentous (F−) actin destabilization. However, the molecular mechanisms that stabilize tenocyte F-actin networks remain unclear. Tropomyosins (Tpms) are master regulators of F-actin networks. There are over 40 mammalian Tpm isoforms, with each isoform having the unique capability to stabilize F-actin sub-populations. Thus, the specific Tpm(s) expressed by a cell defines overall F-actin organization. Here, we investigated F-actin destabilization by stress deprivation of tendon and tested the hypothesis that stress fiber-associated Tpm(s) stabilize tenocyte F-actin to regulate cellular phenotype. Stress deprivation of mouse tail tendon fascicles downregulated tenocyte genes (collagen-I, tenascin-C, scleraxis, α-smooth muscle actin) and upregulated matrix metalloproteinase-3. Concomitant with mRNA modulation were increases in DNAse-I/Phallodin (G/F-actin) staining, confirming F-actin destabilization by tendon stress deprivation. To investigate the molecular regulation of F-actin stabilization, we first identified the Tpms expressed by mouse tendons. Tendon cells from different origins (tail, Achilles, plantaris) express three isoforms in common: Tpm1.6, 3.1, and 4.2. We examined the function of Tpm3.1 since we previously determined that it stabilizes F-actin stress fibers in lens epithelial cells. Tpm3.1 associated with F-actin stress fibers in native and primary tendon cells. Inhibition of Tpm3.1 depolymerized F-actin, leading to decreases in tenogenic expression, increases in chondrogenic expression, and enhancement of protease expression. These expression changes by Tpm3.1 inhibition are consistent with tendinosis progression. A further understanding of F-actin stability in musculoskeletal cells could lead to new therapeutic interventions to prevent alterations in cellular phenotype during disease progression.

Whole mount staining of lenses for visualization of lens epithelial cell proteins

Patel SD, Aryal S, Mennetti LP, Parreno J

MethodsX. 2021 May 6;8:101376.

Whole mount imaging of the lens allows for high spatial resolution visualization of lens epithelial structures by using small molecule fluorescent probes. However, the visualization of specific proteins in lens epithelial cells within whole lenses remains a challenge as the capsule that surrounds the lens does not allow penetration of antibodies. Here we describe a whole mount imaging method that allows us to overcome this challenge by digesting the lens capsules of paraformaldehyde fixed lenses using collagenase. This method enables the penetration of antibodies for effective visualization of proteins in the epithelium of whole lenses.•A limitation to lens whole mount imaging is the ability to visualize specific proteins as the collagen capsule surrounding the lens impedes the penetration of antibodies•This protocol helps overcome this limitation by a light collagenase digestion of the capsule of fixed lenses prior to immunostaining•This method allows for the imaging of specific proteins in the epithelium of the whole lens tissue.

Tropomyosin 3.1 Association With Actin Stress Fibers is Required for Lens Epithelial to Mesenchymal Transition.

Parreno J, Amadeo MB, Kwon EH, Fowler VM

Invest Ophthalmol Vis Sci. 2020 Jun 3;61(6):2

Purpose: Epithelial to mesenchymal transition (EMT) is a cause of anterior and posterior subcapsular cataracts. Central to EMT is the formation of actin stress fibers. Selective targeting of actin stress fiber-associated tropomyosin (Tpm) in epithelial cells may be a means to prevent stress fiber formation and repress lens EMT.

Methods: We identified Tpm isoforms in mouse immortalized lens epithelial cells and epithelial and fiber cells from whole lenses by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) followed Sanger sequencing. We focused on the role of one particular tropomyosin isoform, Tpm3.1, in EMT. To induce EMT, we treated cells or native lenses with TGFβ2. To test the function of Tpm3.1, we exposed cells or whole lenses to a Tpm3.1-specific chemical inhibitor, TR100, as well as investigated lenses from Tpm3.1 knockout mice. We examined stress fiber formation by confocal microscopy and assessed EMT progression by analysis of alpha-smooth muscle actin (αSMA) mRNA (real-time RT-PCR), and protein (Western immunoassay [WES]).

Results: Lens epithelial cells express eight Tpm isoforms. Cell culture studies showed that TGFβ2 treatment results in the upregulation of Tpm3.1, which associates with actin in stress fibers. TR100 prevents stress fiber formation and reduces αSMA in TGFβ2-treated cells. Using an ex vivo lens culture model, TGFβ2 treatment results in stress fiber formation at the basal regions of the epithelial cells. Genetic knockout of Tpm3.1 or treatment of lenses with TR100 prevents basal stress fiber formation and reduces epithelial αSMA levels.

Conclusions: Targeting specific stress fiber associated tropomyosin isoform, Tpm3.1, is a means to repress lens EMT.

YAP/TAZ regulates the expression of proteoglycan 4 and tenascin C in superficial-zone chondrocytes.

Delve E, Co V, Regmi SC, Parreno J, Schmidt TA, Kandel RA.

Eur Cell Mater. 2020 Jan 9;39:48-64.

The roles of cell division control protein 42 homologue (CDC42) and actin polymerisation in regulating the phenotype of superficial-zone chondrocytes (SZCs) have been demonstrated in vitro; however, the signalling pathway(s) downstream have yet to be fully elucidated. The study hypothesis was that Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) act downstream to regulate proteoglycan 4 (PRG4) and tenascin C (TNC). Bovine SZCs grown in monolayer were treated with ML141 (CDC42 inhibitor) or the actin depolymerising agents, latrunculin B and cytochalasin D, to determine the effect on YAP/TAZ. Verteporfin (YAP/TAZ inhibitor) and YAP/TAZ siRNA-mediated knockdown were used to determine their role in regulating PRG4 and TNC. ML141 treatment reduced total YAP/TAZ protein, nuclear TAZ levels and the YAP/TAZ target gene, connective tissue growth factor (CTGF) mRNA levels. Latrunculin B decreased nuclear TAZ, while cytochalasin D treatment trended towards increased nuclear TAZ (p = 0.06), correlating with decreased and increased CTGF mRNA levels, respectively. Verteporfin treatment decreased PRG4 and TNC expression, with no effect on actin polymerisation. siRNA-mediated knockdown of YAP/TAZ revealed that PRG4 was regulated by YAP/TAZ while TNC was regulated by TAZ only. As cytochalasin D can activate myocardin-related transcription factor-A (MRTF-A), siRNA-mediated knockdown was performed to determine the role of MRTF-A in regulating YAP/TAZ. Although nuclear TAZ decreased, no significant changes in total protein levels were observed. Findings suggested that CDC42 and actin polymerisation regulated SZCs through multiple actin-regulated pathways. Understanding the regulation of these chondroprotective molecules may have important implications for prevention/treatment of osteoarthritis.

Age-related changes in eye lens biomechanics, morphology, refractive index and transparency.

Cheng C, Parreno J, Nowak RB, Biswas SK, Wang K, Hoshino M, Uesugi K, Yagi N, Moncaster JA, Lo WK, Pierscionek B, Fowler VM.

Aging (Albany NY). 2019 Dec 16;11(24):12497-12531.

Life-long eye lens function requires an appropriate gradient refractive index, biomechanical integrity and transparency. We conducted an extensive study of wild-type mouse lenses 1-30 months of age to define common age-related changes. Biomechanical testing and morphometrics revealed an increase in lens volume and stiffness with age. Lens capsule thickness and peripheral fiber cell widths increased between 2 to 4 months of age but not further, and thus, cannot account for significant age-dependent increases in lens stiffness after 4 months. In lenses from mice older than 12 months, we routinely observed cataracts due to changes in cell structure, with anterior cataracts due to incomplete suture closure and a cortical ring cataract corresponding to a zone of compaction in cortical lens fiber cells. Refractive index measurements showed a rapid growth in peak refractive index between 1 to 6 months of age, and the area of highest refractive index is correlated with increases in lens nucleus size with age. These data provide a comprehensive overview of age-related changes in murine lenses, including lens size, stiffness, nuclear fraction, refractive index, transparency, capsule thickness and cell structure. Our results suggest similarities between murine and primate lenses and provide a baseline for future lens aging studies.

Keywords: cataract; epithelial cell; fiber cell; stiffness; strain.

Redifferentiated Chondrocytes in Fibrin Gel for the Repair of Articular Cartilage Lesions.

Bianchi VJ, Lee A, Anderson J, Parreno J, Theodoropoulos J, Backstein D, Kandel R.

Am J Sports Med. 2019 Aug;47(10):2348-2359.

Background: Autologous chondrocyte implantation, which uses passaged chondrocytes, commonly leads to the formation of fibrocartilage. When chondrocytes are passaged to increase cell numbers, they lose their phenotype and ability to form hyaline cartilage. The use of transforming growth factor β (TGFβ) to redifferentiate passaged chondrocytes has been validated in vitro; however, it is unknown if redifferentiated chondrocytes will enhance defect repair when implanted in vivo. Furthermore, fibrin gel is used in orthopaedic surgery as a fixative and scaffold and could be an appropriate carrier to enhance retention of cells in the repair site.

Purpose: To investigate if passaged redifferentiated chondrocytes in fibrin gel have the ability to form cartilage tissue and if these redifferentiated cells will enhance the formation of hyaline cartilage in vivo when implanted into critical-size osteochondral defects.

Study design: Controlled laboratory study.

Methods: Rabbit and human chondrocytes were serially passaged twice in monolayer culture. Twice-passaged cells were used directly (dedifferentiated) or redifferentiated in high-density culture with TGFβ3. Dedifferentiated or redifferentiated cells were mixed with fibrin gel to form fibrin clots, which were cultured in vitro to assess the use of fibrin gel as a scaffold or implanted in vivo in a critical-size osteochondral defect in New Zealand White rabbit knee joints. Rabbits were sacrificed 6 weeks after implantation, and tissues were assessed histologically and by immunohistochemistry.

Results: Redifferentiation of passaged chondrocytes by means of 3-dimensional culture in the presence of TGFβ3 improved the formation of cartilaginous tissues in vitro, and culture in fibrin gel did not affect the cell phenotype. Implantation of dedifferentiated cells in vivo resulted in fibrocartilaginous repair tissues. Redifferentiated chondrocyte implants resulted in granulation tissues containing the hyaline cartilage marker collagen type 2.

Conclusion: Redifferentiated chondrocytes will maintain their chondrogenic differentiation in fibrin clots. Implanted redifferentiated chondrocytes show a different reparative response than dedifferentiated chondrocytes and do not appear to enhance repair at an early time point. Another study of longer duration is required to assess tissue maturation over time.

Clinical relevance: Redifferentiation of passaged chondrocytes with TGFβ3 before implantation does not improve defect repair in the first 6 weeks.

Keywords: chondrocytes; fibrin gel; osteochondral defect; transforming growth factor beta.

Adseverin, an actin binding protein, regulates articular chondrocyte phenotype.

Chan B, Parreno J, Glogauer M, Wang Y, Kandel R.

J Tissue Eng Regen Med. 2019 Aug;13(8):1438-1452.

Chondrocytes dedifferentiate as a result of monolayer culture for cell number expansion. This is associated with the development of an elongated shape, increased actin polymerization, development of stress fibres, and expression of contractile molecules. Given the changes in actin status with dedifferentiation, the hypothesis of this study was that adseverin, an actin severing and capping protein, plays a role in regulating chondrocyte phenotype and function. This study reports that serial passaging of articular chondrocytes in monolayer culture resulted in loss of adseverin protein expression as early as Day 14 of culture and remained repressed in Passage 2 (P2) cells. Knockdown of adseverin by siRNA in primary chondrocytes promoted an increase in cell size and an elongated shape, actin stress fibres, decreased G-/F-actin ratio, and increased number of actin-free barbed ends. The cells also showed increased expression of the contractile genes and proteins, vinculin and α-smooth muscle actin, and increased ability to contract collagen gels. These are all features of dedifferentiation. These effects were due to adseverin as adseverin overexpression following transfection of the green fluorescent protein-adseverin plasmid partially reversed all of these changes in P2 chondrocytes. Furthermore, sox9 and aggrecan chondrogenic gene expression was upregulated, and collagen type I genes expression was downregulated with adseverin overexpression. The change in aggrecan mRNA expression had functional consequence as these cells exhibited increased total proteoglycan synthesis. These findings demonstrate that adseverin regulates features indicative of redifferentiation in passaged articular chondrocytes through modulation of the actin cytoskeleton status and potentially may regulate the maintenance of phenotype in primary chondrocytes.

Keywords: actin binding protein; adseverin; chondrocyte; dedifferentiation; phenotype; redifferentiation.

Multifunctional roles of tropomodulin-3 in regulating actin dynamics.

Parreno J, Fowler VM.

Biophys Rev. 2018 Dec;10(6):1605-1615.

Tropomodulins (Tmods) are proteins that cap the slow-growing (pointed) ends of actin filaments (F-actin). The basis for our current understanding of Tmod function comes from studies in cells with relatively stable and highly organized F-actin networks, leading to the view that Tmod capping functions principally to preserve F-actin stability. However, not only is Tmod capping dynamic, but it also can play major roles in regulating diverse cellular processes involving F-actin remodeling. Here, we highlight the multifunctional roles of Tmod with a focus on Tmod3. Like other Tmods, Tmod3 binds tropomyosin (Tpm) and actin, capping pure F-actin at submicromolar and Tpm-coated F-actin at nanomolar concentrations. Unlike other Tmods, Tmod3 can also bind actin monomers and its ability to bind actin is inhibited by phosphorylation of Tmod3 by Akt2. Tmod3 is ubiquitously expressed and is present in a diverse array of cytoskeletal structures, including contractile structures such as sarcomere-like units of actomyosin stress fibers and in the F-actin network encompassing adherens junctions. Tmod3 participates in F-actin network remodeling in lamellipodia during cell migration and in the assembly of specialized F-actin networks during exocytosis. Furthermore, Tmod3 is required for development, regulating F-actin mesh formation during meiosis I of mouse oocytes, erythroblast enucleation in definitive erythropoiesis, and megakaryocyte morphogenesis in the mouse fetal liver. Thus, Tmod3 plays vital roles in dynamic and stable F-actin networks in cell physiology and development, with further research required to delineate the mechanistic details of Tmod3 regulation in the aforementioned processes, or in other yet to be discovered processes.

Keywords: Actin; Actin filament; Actin sequestering; Pointed-end capping; Tropomodulin; Tropomyosin.

Conflict of interest statement

Conflict of interest

Justin Parreno declares that he has no conflict of interest. Velia M. Fowler declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Figures

Adherent agarose mold cultures: An in vitro platform for multi-factorial assessment of passaged chondrocyte redifferentiation.

Parreno J, Bianchi VJ, Sermer C, Regmi SC, Backstein D, Schmidt TA, Kandel RA.

J Orthop Res. 2018 Sep;36(9):2392-2405.

Generating the best possible bioengineered cartilage from passaged chondrocytes requires culture condition optimization. In this study, the use of adherent agarose mold (adAM) cultures to support redifferentiation of passaged twice (P2) chondrocytes and serve as a scalable platform to assess the effect of growth factor combinations on proteoglycan accumulation by cells was examined. By 2 days in adAM culture, bovine P2 cells were partially redifferentiated as demonstrated by regression of actin-based dedifferentiation signalling and fibroblast matrix and contractile gene expression. By day 10, aggrecan and type II collagen gene expression were significantly increased in adAM cultured cells. At day 20, a continuous layer of cartilage tissue was observed. There was no evidence of tissue contraction by P2 cells in adAM cultures. The matrix properties of the resultant tissue as well as proteoglycan 4 (PRG4) secreted by the cells were dependent on the initial cell seeding density. AdAM cultures were scalable and culture within small 3 mm diameter adAM allowed for multi-factorial assessment of growth factors on proteoglycan accumulation by human P2 chondrocytes. Although there was a patient specific response in proteoglycan accumulation to the various cocktail combinations, the cocktail consisting of 2 ng/ml TGFβ1, 10 ng/ml FGF2, and 250 ng/ml FGF18 resulted in a consistent increase in alcian blue tissue staining. Additional studies will be required to identify the optimal conditions to bioengineer articular cartilage tissue for clinical use. However, the results to date suggest that adAM cultures may be suitable to use for high throughput assessment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2392-2405, 2018.

Keywords: bioengineered; cartilage; chondrocyte; dedifferentiation; redifferentiation.

CDC42 regulates the expression of superficial zone molecules in part through the actin cytoskeleton and myocardin-related transcription factor-A.

Delve E, Parreno J, Co V, Wu PH, Chong J, Di Scipio M, Kandel RA.

J Orthop Res. 2018 Sep;36(9):2421-2430.

Osteoarthritis (OA) is a degenerative disease that initially manifests as loss of the superficial zone (SZ) of articular cartilage. SZ chondrocytes (SZC) differ in morphology from other chondrocytes as they are elongated and oriented parallel to the tissue surface. Proteoglycan 4 (PRG4) and tenascin C (TNC) are molecules expressed by SZC, which have been shown to be chondroprotective. Identification of the signalling pathway(s) regulating expression of SZ molecules may lead to a therapeutic target that can be used to delay or prevent the onset of OA. The hypothesis of this study is that expression of SZ molecules are regulated in part, by the CDC42-actin-myocardin-related transcription factor-A (MRTF-A) signaling pathway. SZC from bovine metacarpal-phalangeal joints were isolated and grown in monolayer culture. Each target in the CDC42-actin-MRTF-A pathway was inhibited and the effect on cell shape, actin cytoskeleton status, and expression of PRG4 and TNC were determined. Treatment with the CDC42 inhibitor ML141 decreased PRG4 and TNC expression, and correlated with increased cell circularity and G-/F-actin ratio. PRG4 and TNC expression were differentially regulated by actin depolymerizing agents, latrunculin B and cytochalasin D. Chemical inhibition of MRTF-A resulted in decreased expression of both PRG4 and TNC; however, specific knockdown by small interfering RNA only decreased expression of TNC indicating that TNC, but not PRG4, is regulated by MRTF-A. Although PRG4 and TNC expression are both regulated by CDC42 and actin, it appears to occur through different downstream signaling pathways. Further study is required to elucidate the pathway regulating PRG4. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2421-2430, 2018.

Keywords: CDC42; MRTF-A; actin cytoskeleton; proteoglycan 4; superficial zone chondrocytes.

The effects of mechanical strain on mouse eye lens capsule and cellular microstructure.

Parreno J, Cheng C, Nowak RB, Fowler VM.

Mol Biol Cell. 2018 Aug 8;29(16):1963-1974.

Abstract

The mouse eye lens was used as a model for multiscale transfer of loads. In the lens, compressive strain is distributed across specific lens tissue microstructures, including the extracellular capsule, as well as the epithelial and fiber cells. The removal of high loads resulted in complete recovery of most, but not all, microstructures.

Figures

MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes.

Parreno J, Raju S, Wu PH, Kandel RA.

Matrix Biol. 2017 Oct;62:3-14.

Chondrocyte culture as a monolayer for cell number expansion results in dedifferentiation whereby expanded cells acquire contractile features and increased actin polymerization status. This study determined whether the actin polymerization based signaling pathway, myocardin-related transcription factor-a (MRTF-A) is involved in regulating this contractile phenotype. Serial passaging of chondrocytes in monolayer culture to passage 2 resulted in increased gene and protein expression of the contractile molecules alpha-smooth muscle actin, transgelin and vinculin compared to non-passaged, primary cells. This resulted in a functional change as passaged 2, but not primary, chondrocytes were capable of contracting type I collagen gels in a stress-relaxed contraction assay. These changes were associated with increased actin polymerization and MRTF-A nuclear localization. The involvement of actin was demonstrated by latrunculin B depolymerization of actin which reversed these changes. Alternatively cytochalasin D which activates MRTF-A increased gene and protein expression of α-smooth muscle actin, transgelin and vinculin, whereas CCG1423 which deactivates MRTF-A decreased these molecules. The involvement of MRTF-A signaling was confirmed by gene silencing of MRTF or its co-factor serum response factor. Knockdown experiments revealed downregulation of α-smooth muscle actin and transgelin gene and protein expression, and inhibition of gel contraction. These findings demonstrate that passaged chondrocytes acquire a contractile phenotype and that this change is modulated by the actin-MRTF-A-serum response factor signaling pathway.

Keywords: Actin; Cartilage; Chondrocyte; Contraction; Dedifferentiation; MRTF.

Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture.

Parreno J, Nabavi Niaki M, Andrejevic K, Jiang A, Wu PH, Kandel RA.

J Anat. 2017 Feb;230(2):234-248.

Tubulin and actin exist as monomeric units that polymerize to form either microtubules or filamentous actin. As the polymerization status (monomeric/polymeric ratio) of tubulin and/or actin have been shown to be important in regulating gene expression and phenotype in non-chondrocyte cells, the objective of this study was to examine the role of cytoskeletal polymerization on the chondrocyte phenotype. We hypothesized that actin and/or tubulin polymerization status modulates the chondrocyte phenotype during monolayer culture as well as in 3D culture during redifferentiation. To test this hypothesis, articular chondrocytes were grown and passaged in 2D monolayer culture. Cell phenotype was investigated by assessing cell morphology (area and circularity), actin/tubulin content, organization and polymerization status, as well as by determination of proliferation, fibroblast and cartilage matrix gene expression with passage number. Bovine chondrocytes became larger, more elongated, and had significantly (P < 0.05) increased gene expression of proliferation-associated molecules (cyclin D1 and ki67), as well as significantly (P < 0.05) decreased cartilage matrix (type II collagen and aggrecan) and increased fibroblast-like matrix, type I collagen (COL1), gene expression by passage 2 (P2). Although tubulin polymerization status was not significantly (P > 0.05) modulated, actin polymerization was increased in bovine P2 cells. Actin depolymerization, but not tubulin depolymerization, promoted the chondrocyte phenotype by inducing cell rounding, increasing aggrecan and reducing COL1 expression. Knockdown of actin depolymerization factor, cofilin, in these cells induced further P2 cell actin polymerization and increased COL1 gene expression. To confirm that actin status regulated COL1 gene expression in human P2 chondrocytes, human P2 chondrocytes were exposed to cytochalasin D. Cytochalasin D decreased COL1 gene expression in human passaged chondrocytes. Furthermore, culture of bovine P2 chondrocytes in 3D culture on porous bone substitute resulted in actin depolymerization, which correlated with decreased expression of COL1 and proliferation molecules. In 3D cultures, aggrecan gene expression was increased by cytochalasin D treatment and COL1 was further decreased. These results reveal that actin polymerization status regulates chondrocyte dedifferentiation. Reorganization of the cytoskeleton by actin depolymerization appears to be an active regulatory mechanism for redifferentiation of passaged chondrocytes.

Keywords: actin; cartilage; chondrocyte; cytoskeleton; dedifferentiation; redifferentiation; tubulin.

Efficient, Low-Cost Nucleofection of Passaged Chondrocytes.

Parreno J, Delve E, Andrejevic K, Paez-Parent S, Wu PH, Kandel R.

Cartilage. 2016 Jan;7(1):82-91.

Nucleofection of chondrocytes has been shown to be an adequate method of transfection. Using Amaxa’s nucleofection system, transfection efficiencies up to 89% were achievable for vector (pmaxGFP) and 98% for siRNA (siGLO) into passaged chondrocytes. However, such methods rely on costly commercial kits with proprietary reagents limiting its use in basic science labs and in clinical translation. Bovine-passaged chondrocytes were plated in serum reduced media conditionsand then nucleofected using various in laboratory-produced buffers. Cell attachment, confluency, viability, and transfection efficiency was assessed following nucleofection. For each parameter the buffers were scored and a final rank for each buffer was determined. Buffer denoted as 1M resulted in no significant difference for cell attachment, confluency, and viability as compared to non-nucleofected controls. Nucleofection in 1M buffer, in the absence of DNA vectors, resulted in increased col2, ki67, ccnd1 mRNA levels, and decreased col1 mRNA levels at 4 days of culture. Flow cytometry revealed that the transfection efficiency of 1M buffer was comparable to that obtained using the Amaxa commercial kit. siRNA designed against lamin A/C resulted in an average reduction of lamin A and C proteins to 19% and 8% of control levels, respectively. This study identifies a cost-effective, efficient method of nonviral nucleofection of bovine-passaged chondrocytes using known buffer formulations. Human-passaged chondrocytes could also be successfully nucleofected in 1M buffer. Thus this method should facilitate cost-efficient gene targeting of cells used for articular cartilage repair in a research setting.

Keywords: cartilage; chondrocytes; gene therapy; nucleofection; transfection.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Collagen type XII and versican are present in the early stages of cartilage tissue formation by both redifferentating passaged and primary chondrocytes.

Taylor DW, Ahmed N, Parreno J, Lunstrum GP, Gross AE, Diamandis EP, Kandel RA.

Tissue Eng Part A. 2015 Feb;21(3-4):683-93.

Current approaches to cartilage tissue engineering require a large number of chondrocytes. Although chondrocyte numbers can be expanded in monolayer culture, the cells dedifferentiate and unless they can be redifferentiated are not optimal to use for cartilage repair. We took advantage of the differential effect of culture conditions on the ability of passaged and primary chondrocytes to form cartilage tissue to dissect out the extracellular matrix (ECM) molecules produced and accumulated in the early stages of passaged cell cartilage tissue formation as we hypothesized that passaged bovine cells that form cartilage accumulate a pericellular matrix that differs from cells that do not form cartilage. Twice passaged bovine chondrocytes (P2) (cartilage forming), or as a control primary chondrocytes (P0) (which do not generate cartilage), were cultured on three-dimensional membrane inserts in serum-free media. P2 redifferentiation was occurring during the first 8 days as indicated by increased expression of the chondrogenic genes Sox9, collagen type II, aggrecan, and COMP, suggesting that this is an appropriate time period to examine the ECM. Mass spectrometry showed that the P2 secretome (molecules released into the media) at 1 week had higher levels of collagen types I, III, and XII, and versican while type II collagen and COMP were found at higher levels in the P0 secretome. There was increased collagen synthesis and retention by P2 cells compared to P0 cells as early as 3 days of culture. Confocal microscopy showed that types XII, III, and II collagen, aggrecan, versican, and decorin were present in the ECM of P2 cells. In contrast, collagen types I, II, and III, aggrecan, and decorin were present in the ECM of P0 cells. As primary chondrocytes grown in serum-containing media, a condition that allows for the generation of cartilage tissue in vitro, also accumulate versican and collagen XII, this study suggests that these molecules may be necessary to provide a microenvironment that supports hyaline cartilage formation. Further study is required to determine if these molecules are also accumulated by passaged human chondrocytes and their role in promoting hyaline cartilage formation.

Expression of type I collagen and tenascin C is regulated by actin polymerization through MRTF in dedifferentiated chondrocytes.

Parreno J, Raju S, Niaki MN, Andrejevic K, Jiang A, Delve E, Kandel R.

FEBS Lett. 2014 Oct 16;588(20):3677-84.

This study examined actin regulation of fibroblast matrix genes in dedifferentiated chondrocytes. We demonstrated that dedifferentiated chondrocytes exhibit increased actin polymerization, nuclear localization of myocardin related transcription factor (MRTF), increased type I collagen (col1) and tenascin C (Tnc) gene expression, and decreased Sox9 gene expression. Induction of actin depolymerization by latrunculin treatment or cell rounding, reduced MRTF nuclear localization, repressed col1 and Tnc expression, and increased Sox9 gene expression in dedifferentiated chondrocytes. Treatment of passaged chondrocytes with MRTF inhibitor repressed col1 and Tnc expression, but did not affect Sox9 expression. Our results show that actin polymerization regulates fibroblast matrix gene expression through MRTF in passaged chondrocytes.

Keywords: Actin; Chondrocyte; Collagen; Dedifferentiation; Myocardin related transcription factor; Tenascin C.

Molecular and mechano-biology of collagen gel contraction mediated by human MG-63 cells: involvement of specific intracellular signaling pathways and the cytoskeleton.

Parreno J, Hart DA.

Biochem Cell Biol. 2009 Dec;87(6):895-904.

Culture of human osteoblast-like MG-63 cells within collagen gels results in the generation of intrinsic stress. Release of such collagen gels from attachment results in gel contraction and enhanced MMP-1, MMP-3, and alpha2 integrin mRNA levels. To understand the potential role of microtubules and signaling pathways involved in MG-63 cell-mediated contraction and gene expression, cells were cultured in collagen gels. After 24 h collagen gels were released, then immediately treated with nocodazole or specific protein kinase inhibitors. Contraction was assessed, RNA isolated, and real-time PCR analysis performed. Treatment with high concentrations of a microtubule depolymerization agent, nocodazole, enhanced early contraction and led to elevated mRNA levels for MMP-3, whereas low concentrations inhibited contraction at later time points and did not affect mRNA levels. ROCK inhibitor treatment (Y27632) inhibited collagen gel contraction and led to depressed mRNA levels. The ERK1/2 inhibitor U0126 did not affect contraction, but treatment led to depressed MMP-1, MMP-3, and alpha2 mRNA levels. The p38MAPK inhibitor SB203580 modestly affected contraction, but did not affect mRNA levels. These results suggest the potential role of cytoskeletal integrity and multiple kinase signaling pathways in specific bone-remodeling events.

Osteoblastic MG-63 cell differentiation, contraction, and mRNA expression in stress-relaxed 3D collagen I gels.

Parreno J, Buckley-Herd G, de-Hemptinne I, Hart DA.

Mol Cell Biochem. 2008 Oct;317(1-2):21-32.

To investigate the molecular aspects of osteoblastic interactions with a type I collagen matrix, human osteoblast-like MG-63 cells were cultured in three-dimensional (3D) collagen I gels. MG-63 cells in collagen gels expressed higher osteocalcin mRNA levels than cells in monolayer (2D) on polystyrene surfaces. Gel contraction was assessed via releasing the collagen gels from attachment following 24 h incubation in serum free, TGF-beta1-treated, or 1,25-(OH)(2)D(3)-treated media. 10 ng/ml of TGF-beta1 was optimal for enhancing contraction and led to decreased osteocalcin mRNA levels. In contrast, 50 nM 1,25-(OH)(2)D(3) led to increased osteocalcin mRNA levels, but did not affect contraction. Furthermore, the effect of contraction on gene expression was examined by releasing a subset of gels after 24 h and assessing mRNA levels by RT-PCR. Contracting gels exhibited temporally regulated differential increases in MMP-1, MMP-3, and alpha(2) integrin mRNA levels at specific time points post release. Cytochalasin D treatment immediately following release of gels inhibited contraction in a dose-dependent manner as well as prevented upregulation of MMP-1, MMP-3, and alpha2 integrin mRNA levels in contracting gels. These results suggest that osteoblastic cells generate internal loads that may affect specific gene expression, and these changes can be altered in the presence of biomediators.

Dermal fibroblasts from red Duroc and Yorkshire pigs exhibit intrinsic differences in the contraction of collagen gels.

De Hemptinne I, Gallant-Behm CL, Noack CL, Parreno J, Hart DA.

Wound Repair Regen. 2008 Jan-Feb;16(1):132-42.

Previous studies have shown that the Yorkshire (Y) pig is a model for normal skin wound healing, while red Duroc (RD) pigs form hypercontracted scars similar to human hypertrophic scars. In order to determine potential intrinsic differences in fibroblast phenotypes, the ability of normal dorsal and ventral dermal fibroblasts from Y and RD pigs to contract collagen gels was assessed. Cells plated in gels were cultured in media supplemented with 2% or 10% FBS +/- 1 or 10 ng/mL transforming growth factor beta1. The degree of contraction of the gels was quantified at defined time-points postrelease. Final contraction levels were dependent on cell density and serum concentration for all cell types. The rates of contraction of RD dorsal fibroblasts were significantly greater than those for Y dorsal fibroblasts. Immunocytochemical analysis revealed the presence of alpha-smooth muscle actin in contracted cells. Furthermore, mRNA levels for matrix metalloproteinase-2 and decorin showed specific increases for the RD cells during contraction. These findings have revealed intrinsically different, location-specific in vitro responses with normal dermal fibroblasts from the two breeds of pig, suggesting that the abnormal skin healing phenotype of RD pigs may be attributable in part to intrinsic genetic differences in fibroblasts between the breeds.